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The laws of thermodynamics, powerful for countless purposes, are not exact: 
both their phenomenological and their statistical-mechanical versions are 
valid only at ‘macroscopic scales’, which are never defined. Here I propose a 
new, exact and scale-independent formulation of the first and second laws of 
thermodynamics, using the principles and tools of the recently proposed 
constructor theory. Specifically, I improve upon the axiomatic formulations of 
thermodynamics (Carathéodory, 1909; Lieb & Yngvason, 1999) by proposing 
an exact and more general formulation of ‘adiabatic accessibility’. This work 
provides an exact distinction between work and heat; it reveals an unexpected 
connection between information theory and the first law of thermodynamics 
(not just the second); it resolves the clash between the irreversibility of the 
‘cycle’-based second law and time-reversal symmetric dynamical laws. It also 
achieves the long-sought unification of the axiomatic version of the second 
law with Kelvin’s. 
 

1. Introduction 
 
An insidious gulf separates existing formulations of thermodynamics from 
other fundamental physical theories. Those formulations are approximate and 
scale-dependent – i.e., they have only a certain domain of applicability, or hold 
only at a certain ‘scale’, or level of ‘coarse-graining’, none of which are ever 
specified. So existing thermodynamics can provide powerful predictions and 
explanations of ‘macroscopic’ systems such as Victorian heat engines, but not 
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about ‘microscopic’ ones, such as individual quantum systems. Consequently, 
the conventional wisdom is that thermodynamics is not a fundamental theory 
of physics at all. 
 
In sharp contrast, in this paper I propose a scale-independent and exact 
formulation of the first and the second laws of thermodynamics – that is to 
say, a formulation that does not rely on approximations, such as ‘mean values 
on ensembles’, ‘coarse-graining procedures’, ‘thermodynamic equilibrium’, or 
‘temperature’. This is a radically new approach, improving upon so-called 
axiomatic thermodynamics (Carathéodory, 1909; Lieb & Yngvason, 1999), and 
using the principles and tools of the recently proposed constructor theory 
(Deutsch, 2013) and the associated constructor theory of information (Deutsch & 
Marletto, 2015).  
 
The key idea is a new, constructor-theoretic definition of adiabatic accessibility, 
based on Lieb&Yngvason’s, but providing an exact distinction between work 
and heat. This then reveals an exact link between thermodynamics and 
(constructor-theoretic) information theory, not only via the second law, as one 
would expect (Landauer, 1961; Bennett, 1987), but also via the first. It also 
unifies Carathéodory’s approach with more traditional ones (e.g. Kelvin’s).  
 
Existing approaches to thermodynamics can be classified as follows: those, 
like Carathéodory’s and the statistical-mechanical approaches, that state the 
second law in terms of spontaneous processes on isolated, confined systems; and 
those that state it in what we shall see with hindsight are informal 
constructor-theoretic terms, i.e., as the impossibility of certain physical 
transformations being performed by devices operating in a cycle, such as 
Kelvin’s and Clausius’s, and Lieb&Yngvason's. The formulation in this paper 
belongs to the latter tradition; hence, as I shall explain, it does not clash with 
time-reversal symmetric dynamical laws – which is, in part, why it can be 
exact (see section 2.1). 
I shall now summarise why constructor theory is needed in my approach 
(section 1.1); the specific problems I shall address (section 1.2); and the logic 
of the solution (section 1.3).   



 3 

1.1. The role of constructor theory 
 
The radically new mode of explanation of constructor theory allows 
thermodynamics to be approached from a new direction – namely that the 
physical world can be described and explained exclusively via statements 

about which physical transformations, more precisely ‘tasks’ (section 2), are 
possible, which are impossible, and why. This is in contrast with the prevailing 
conception of fundamental physics, under which physical laws are predictors of 
what must happen, given boundary conditions in spacetime that sufficiently fix 
the state.  
 
One of constructor theory’s key insights is that there is a fundamental 
difference between a task being possible and a process being permitted by 
dynamical laws. The latter means that the process occurs spontaneously (i.e., 
when the physical system is isolated, with no interactions with the 
surroundings) given certain boundary conditions. In contrast, a task is 
deemed ‘possible’ if the laws of physics allow for arbitrarily accurate 
approximations to a constructor for the physical transformation the task 
represents. A constructor (see section 2) is an object that, if presented with one 
of the designated inputs of the task, produces (one of) the corresponding 
outputs, and retains the ability to do this again. This allows it to operate ‘in a 
cycle’ – a concept familiar in thermodynamics, and indeed, idealised heat 
engines are constructors. But the concept of a constructor is extremely general 
– for example, computers and chemical catalysts can be regarded as 
approximately-realised constructors. In reality no perfect constructor ever 
occurs, because of errors and deterioration; but whenever a task is possible 
the behaviour of a constructor for that task can be approximated to arbitrarily 
high accuracy. Under constructor theory (despite its name!) laws are 
expressed referring exclusively to the possibility or impossibility of tasks, not 
to constructors.  
 
The laws of constructor theory are principles – laws about laws – i.e. they 
underlie other physical theories (such as laws of motion of elementary 
particles, etc.), called subsidiary theories in this context. These principles 
express regularities among all subsidiary theories, including new regularities 
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that the prevailing conception cannot adequately capture. Thus, constructor 
theory is not just a framework (such as resource theory, (Coecke et. al., 2014), 
or category theory (Abramsky & Coecke, 2009)) for reformulating existing 
theories: it also has new laws of its own. 
 
Essential for the present work are the new principles of the constructor theory 
of information (Deutsch & Marletto, 2015). They express the regularities in 
nature that are implicitly required by theories of information (e.g. Shannon’s), 
via exact statements about possible and impossible tasks, thus giving full 
physical meaning to the hitherto fuzzily defined notion of information. These 
laws will be used (see section 5) to express the exact connection between 
thermodynamics and information.  

1.2. The problem 
 
There are several not-quite-equivalent formulations of the laws of 
thermodynamics (Bailyn, 1994; Buchdahl, 1966). Here I shall summarise them 
by merging Carathéodory’s approach with its most recent formulation, by 
Lieb and Yngvason (Lieb & Yngvason, op. cit.), on which I shall improve. This 
approach is notable for improving upon Kelvin’s (Marsland et. al., 2015), in 
that it defines ‘heat’ – a notoriously fuzzy concept – in terms of ‘work’. 
However, as I shall explain, it too is affected by serious problems. In short, it 
lacks definite physical content; also, just like all other existing formulations, it 
relies on unphysical idealisations, which make the domain of applicability of 
its laws ill-defined.  
 
The primitive notion in that approach is that of an adiabatic enclosure: 
 

An adiabatic enclosure is one that only allows ‘mechanical coordinates’ 
[see below] of a physical system to be modified.  
 

Then, the first law of thermodynamics states that all ways of ‘doing work’ on 
adiabatically enclosed systems (i.e. those inside an adiabatic enclosure) are 
equivalent (Atkins, 1998) in the sense that: 
 



 5 

The work required to change an adiabatically enclosed system from 
one specified state to another specified state is the same however the 
work is done.  

 
This allows one to introduce internal energy as an additive function of state; 

and then ‘heat’ is defined as the difference  ΔQ  between the work  ΔU  

required to drive the system from the state x to the state y when adiabatically 

enclosed, and the work  ΔW  required to drive the system between the same 
two states when the adiabatic enclosure is removed. The classic expression of 
the first law is then: 
 

 ΔU = ΔW + ΔQ  

 
The fundamental problem here is that everything rests on the above-
mentioned ‘mechanical coordinates’, but it is never specified what properties 
the coordinates of a system must have for them to be ‘mechanical’. 
Mechanical coordinates are only defined ostensively – i.e., by listing some 
variables of real physical systems (e.g. momentum, volume) that seem to 
possess the intuitive property. However, ostensive definitions have little 
physical content, and none at a fundamental level.  Is the x-component of a 
quantum spin a mechanical coordinate? Existing thermodynamics gives no 
indication. So the ‘completely mechanical definition of heat’, at which 
Caratheodory’s approach aimed, is never actually achieved; nor, therefore, is 
his distinction between work and heat (Uffink, 2001). 
 
The same problem affects the second law, which is rooted in the notion of 
adiabatic accessibility of ‘macrostates’ x and y of a physical system 
(Lieb&Yngvason, op. cit.):  
 

The state x is adiabatically accessible from the state y if the physical 

transformation  x → y{ }  can be brought about by a device capable of 

operating in a cycle [a constructor], with the sole side-effect being the 
displacement of a weight in a gravitational field.  
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The second law can then be stated as (Caratheodory, 1909):  
 

In any neighbourhood of any point x there exists a point y such that y 
is not adiabatically accessible from x. 

 
A famous example of such x and y is 
given by Joule’s experiment (see Figure 
1) to measure ‘the mechanical equivalent 
of heat’. The constructor in question 
consists of the stirrer and the pulley (as 
they undergo no net change and can 
work in a cycle) and the ‘weight’ 
includes the string.  x and y are two 
macrostates in the thermodynamic space 
– labelled by their different 
temperatures x and y. Under known 

laws of physics, if y > x, y is 
adiabatically accessible from x, but not 
vice versa.  
 

The problem here is that ‘adiabatically accessible’ is given only an ad-hoc 
definition, again with little physical significance. What is the physical 
property of the weight that makes the transformation between x and y 
adiabatic, when accomplished with the weight being the sole side-effect? No 
answer can be found in thermodynamics. Yet answering that question is 
essential to defining the domain of applicability of the second law, and to its 
physical content. In its current form, the law may not be applicable in more 
general situations – such as in information-processing nanoscale devices (see, 
e.g., Goold et. al., 2016; Brandão et al., 2015), where side-effects of 
transformations are not clearly related to a weight or other intuitively defined 
mechanical coordinate.  
 
The first and second laws proposed in this paper are not affected by the above 
problems. In particular, they are scale-independent: thus, although this goes 

Figure 1: The state y, at a higher temperature, is 
adiabatically accessible from x, at a lower 
temperature, but not vice-versa. (Adapted from: 

Harper's New Monthly Magazine, No. 231, August, 1869). 
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well beyond the scope of this paper, they should be applicable to nano-scale 
devices too. 
 
Another problem with all existing formulations of thermodynamics, and 
which does not arise in my approach, is that they rely on the existence of 
‘equilibrium states’ (or equivalent), which are in turn vaguely defined. 
Equilibrium is when “all the fast things have happened and the slow things 
have not” (Feynman, 1972) – but this condition is never strictly satisfied in 
reality. A more rigorous definition is that equilibrium states are those “which, 
once attained, remain constant in time thereafter until the external conditions 
are unchanged” (Brown & Uffink, 2001). Such states never exactly occur 
either, because of fluctuations (both in the classical (Brown et. al.,  2009) and 
quantum (Linden et. al., 2009) domains). Existing formulations postulate 
equilibrium states via two routes. One is the so-called “minus-first” law – 
(Brown & Uffink op. cit.): 
 

An isolated system in an arbitrary initial state within a finite fixed 

volume will spontaneously attain a unique state of equilibrium.  

The other is the zeroth law (e.g. (Atkins, 1998), which is used to define 
temperature by requiring transitivity of the thermodynamic equilibrium 
relation between any two physical systems.  
 
As I shall explain, using constructor theory I shall not need to postulate the 
existence of equilibrium states via the minus-first law (see section 2.1) and I 
shall introduce an equivalent of the zeroth law (see section 6) which does not 
rely on there being such equilibrium states, nor temperature. It will be 
expressed, of course, as an exact statement about certain tasks being possible. 
The reason why constructor-theoretic statements are exact is that they do not 
require the existence of an ideal constructor for possible tasks (see section 2.1); 
rather, they refer exclusively to possible/impossible tasks, i.e., to physical 
laws allowing/not allowing a sequence of arbitrarily accurate approximations 
to the ideal constructor.  
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Note that deriving thermodynamics from statistical mechanics (Landsberg, 
1978) does not solve any of the above problems. Statistical mechanics’s aim is 
to reconcile the second law of thermodynamics with the prevailing 
conception. Thus, the second law in this context requires there to be 
irreversibility in the spontaneous evolution of confined, isolated systems 
(Wallace, 2015a); such irreversibility is usually cast in terms of entropy being a 
globally monotonically increasing function (Uffink, op. cit.). However, 
deriving or even reconciling such statements with the microscopic time-
reversal symmetric dynamical laws is notoriously problematic, because of the 
inevitability of Poincaré recurrence (Wallace, 2015b). To that end, the 
prevailing conception has produced a number of models where time-reversal 
asymmetric, second-law like behaviour arises from microscopic time-reversal 
symmetric laws. Such models, however, adopt approximations involving 
ensembles or coarse-graining procedures, or statistical (probabilistic) 
assumptions about the process of equilibration – e.g. its “probably” leading to 
the “most probable” configuration – defined with respect to a natural 
measure on phase space, not from anything real; or about some specially 
selected, ad hoc, initial conditions. So once more, albeit successful in all sorts 
of problem-situations, these approximation schemes lead to laws that are not 
exact and rest on ad-hoc assumptions. Factual, exact statements in the 
unphysical limit of an ensemble cannot possibly imply any factual, exact 
statement about a single system; and resorting to some ‘coarse-graining’ 
scheme only means that the domain of applicability of the laws is vaguely 
defined. Hence, in this regard, the statistical-mechanics path to foundations 
for thermodynamics is no less problematic than the phenomenological 
approach.  
 
Now, the above problems are nowadays generally regarded as unsolvable:  
thermodynamic laws are expected to hold only approximately and at 
macroscopic scales. This capitulation in the face of foundational problems 
generates a number of troubling open issues. For instance, updated versions 
of Maxwell’s demon (e.g. Szilard’s engine (Lex & Reff, 1990)), purporting to 
violate the second law of thermodynamics, are hard to exorcise. In such 
models, the working medium of the alleged perpetual motion machine of the 
second kind is constituted by a single particle. Since the second law is only 
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known in scale-dependent forms, it is difficult to pin down what exactly it is 
that exorcises the demon, because it is controversial what exactly the second 
law forbids in that context (Bennett, 1987; Earman & Norton, 1999). Similar 
problems arise in the new field of quantum thermodynamics (Goold op.cit., 
2016; Brandão op.cit., 2015), which investigates the implications of the laws of 
thermodynamics for quantum systems such as atomic-scale ‘heat-engines’. In 
addition, the known connection between existing information theory 
(classical and quantum) and thermodynamics (Bennett, op. cit. ; Landauer, op. 
cit. ) – together with the isolated case of the entropy of an individual black 
hole (Beckenstein, 1972) – strongly suggest that there is indeed an exact, scale-
independent formulation of thermodynamic laws. 
 
In this paper I show that the ‘cycle’ form of the laws of thermodynamics can 
be stated exactly.  
 

1.3. The logic of the solution 
 
The key step of my construction is to recast adiabatic accessibility in constructor 
theory (section 5). To that end, I define a class of physical systems – work 
media – which would include idealised weights, springs and flywheels – by 
stating in exact, constructor-theoretic terms what tasks must be possible on 
them. I then define ‘adiabatic accessibility’ in terms of work media. This 
definition is very general – it can be applied to any subsidiary theory 
complying with the principles of constructor theory. An exact, scale-
independent formulation of the first and second laws follows.  
 
As I mentioned above, those laws are not confined to equilibrium 
thermodynamics only, nor do they rely on any notion of temperature.  The 
connection with equilibrium thermodynamics (which will not be explored in 
this work but is an interesting future application of it) may be established via 
the constructor-theoretic version of the zeroth law (section 6).  As in traditional 
thermodynamics, the zeroth law is an ‘afterthought’ (Atkins, 2007): it comes 
at the end of the construction. However, unlike in the traditional formulation, 
is not about temperature, but about the possibility of a certain class of tasks.  
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As a consequence, the Carathéodory’s approach is unified with Kelvin’s. In 
short, the two approaches differ as follows: Kelvin’s statement of the second 
law sets a definite direction to the 'irreversibility' of the second law, stating 
that it is impossible to convert heat completely into work (without any other 
side-effects), but it is possible to do the reverse; Carathéodory-type statements 
are weaker, in that they only imply the irreversibility of some transformation, 
without specifying which direction is forbidden  (Uffink, op. cit.; Marsland et. 
al., op. cit. ). Here the two approaches are properly unified, and heat and work 
given exact, constructor-theoretic characterisations.  
 
In addition, as I shall explain in section 2.1, expressing the laws in terms of 
possible or impossible tasks, and not about spontaneous processes 
happening, has two significant consequences for thermodynamics: (i) it is no 
longer necessary to require that equilibrium states exist; (ii) the statement of the 

second law requiring that a certain task (say,  x → y{ } ) be possible, but the task 

representing the inverse transformation,  y → x{ }  , be impossible, is shown 

not to clash with time-reversal symmetric dynamical laws. This is because, in 
short, a task being possible, unlike a process happening, requires a 
constructor for the task; and the time-reverse of a process including a 

constructor for  x → y{ }  need not include a constructor for  y → x{ }  (section 

2.1).  
 
A notable difference is that in constructor theory the role of entropy is not as 
central as in classical axiomatic thermodynamics. The second law’s physical 
content is not that it forbids tasks that decrease (or increase) the entropy of a 
system, but that it forbids certain tasks to be performed adiabatically (as 
defined in section 5), while requiring the inverse physical transformation to 
be performable adiabatically. Entropy enters the picture after the second law, 
as a quantitative classification of tasks, so that tasks that change entropy by 
the same amount belong to the same class; but the physical content of the 
second law resides elsewhere: in the definition of adiabatically accessible.   
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Finally, the first law of constructor-theoretic thermodynamics is connected to 
(constructor) information theory, exactly. This is a novel development: in all 
previous treatments it is only the second law that is so connected. 

1.4. The threads 
 
This paper has two main threads. One is that by expressing physical laws in 
terms of possible and impossible tasks, instead of processes occurring or not 
(with some probability), one can express more about physical reality. 
Specifically, one can accommodate counterfactual properties of physical systems 
– about what can, or cannot, be done to them. This is the key, for instance, to 
the new definition of adiabatic accessibility: ‘work media’, on which the 
definition relies, are defined by their counterfactual properties. Thus, by 
switching to that mode of explanation, it is possible to formulate laws about 
entities which appear to be inherently fuzzy in the prevailing conception of 
physics.   
 
The other thread is that information-based concepts, such as 
distinguishability, provide physical foundations for the notions of heat and 
work, and for distinguishing between them. This is possible because in the 
constructor theory of information (section 3), the fuzzily-defined traditional 
notion of information (Timpson, 2013) is replaced by exact ones. In particular, 
nothing in the constructor-theoretic notion of information relies on any 
subjective, agent-based, or probabilistic/statistical statements about reality.  

2. Constructor Theory 
 
In constructor-theoretic physics the primitive notion of a ‘physical system’ is 
replaced by the slightly different notion of a substrate, which is a physical 
system some of whose properties can be changed by a physical 
transformation brought about by a constructor, which is in turn a substrate 
that undergoes no net change in its ability to do this. The other primitive 
elements are tasks (as defined below), and the statements about their being 
possible/impossible. Intuitively a task specifies the states of all the substrates 
allowed at the beginning and end of the transformation, except those of the 
constructor(s) bringing it about.  
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Attributes and variables. For any substrate, a subsidiary theory must provide 
its states, attributes and variables. These are physical properties of the substrate, 
which are represented in several interrelated ways. An attribute of a substrate 
is formally defined as a set of all the states in which the substrate has that 
property. For example, a substrate might be a die on a table. Its upturned face 

is a substrate that can have six attributes    n : n ∈ 1,2,...6{ } , each one consisting of 

a vast number of states representing, say, the configuration of the atoms of the 
die. Given these attributes, one can construct others by set-wise union or 
intersection. For example, the attribute ‘odd’ of the upturned face, denoted by 

odd, is the union of all the odd-numbered attributes:  odd = 1∪ 3∪ 5 . Similarly 

for the attribute ‘even’:  even = 2∪ 4∪6 .  Attributes therefore generalise and 
make exact the notion of 'macrostates'; the crucial difference is that attributes, 
unlike macrostates, are not the result of any approximation (e.g. coarse-
graining) procedures. An intrinsic attribute is one that can be specified 
without referring to any other specific system. For example, ‘showing the 
same number’ is an intrinsic attribute of a pair of dice, but ‘showing the same 
number as the other one in the pair’ is not an intrinsic attribute of either of 
them. In quantum theory, ‘being entangled with each other’ is an intrinsic 
attribute of a qubit pair; ‘having a particular density operator’ is an intrinsic 
attribute of a qubit; if the rest of its quantum state describes entanglement 
with other systems, then the attribute is non-intrinsic. In this paper  
A physical variable is defined in a slightly unfamiliar way as any set of disjoint 
attributes of the same substrate. In quantum theory, this includes not only all 

observables, but many other constructs, such as any set   x ,y{ }  where the 

attributes x and y each contain a single state  x and  y  respectively, not 

necessarily orthogonal. Whenever a substrate is in a state in an attribute 

 x ∈X , where X is a variable, we say that X is sharp (on that system), with the 

value x – where the x are members of the set X of labels of the attributes in X 2. 
As a shorthand, “X is sharp in a” shall mean that the attribute a is a subset of 
                                                
2 I shall always define symbols explicitly in their contexts, but for added clarity I use 
this convention: Small Greek letters (γράμματα) denote states; small italic boldface 
denotes; CAPITAL ITALIC BOLDFACE denotes variables; small italic denotes labels; 
CAPITAL ITALIC denotes sets of labels; CAPITAL BOLDFACE denotes physical 
systems; and capital letters with arrow above (e.g.   

!
C ) denote constructors.  
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some attribute in the variable X.  In the case of the die, ‘parity’ is the variable 

  P = even,odd{ } . So, when the die’s upturned face is, say, in the attribute  6 , 

we say that “P is sharp with value even”. Also, we say that P is sharp in the 

attribute 6, with value even – which means that  6 ⊆ even . In quantum theory, 
the z-component-of-spin variable of a spin-½ particle is the set of two 
attributes: that of the z-component of the spin being ½, and -½. That variable 
is sharp when the qubit is in a pure state with spin ½ or -½ in the z-direction, 
and is non-sharp otherwise. 
Tasks. A task is the abstract specification of a set of physical transformations on a 
substrate, which is transformed from having one attribute to having another. 

It is expressed as a set of ordered pairs of input/output attributes  xi → yi  of the 

substrates. I shall represent it as: 

   A = {x
1
→ y

1
, x

2
→ y

2
,...} . 

The      In A( ) ! xi{ }  are the legitimate input attributes, the      Out A( ) ! yi{ }  are the 

output attributes. The transpose of a task  A , denoted by   A
∼ , is such that 

   In A∼( ) = Out A( ) and    Out A∼( ) = In A( ) . A task where    In A( ) =V = Out A( )  for 

some variable V will be referred to as ‘a task  A  over V’.  
 

A constructor for the task  A  is defined as a physical system that would cause 

 A  to occur on the substrates and would remain unchanged in its ability to cause 
that again. Schematically: 

!Input!attribute!of!substrates
Constructor⎯ →⎯⎯⎯⎯⎯ Output!attribute!of!substrates  

where constructor and substrates jointly are isolated.  This scheme draws 
upon two primitive notions that must be given physical meanings by the 
subsidiary theories, namely: the substrates with the input attribute are 
presented to the constructor, which delivers the substrates with the output 

attribute. A constructor is capable of performing  A  if, whenever presented with 
the substrates (where it and they are in isolation) with a legitimate input 

attribute of  A  (i.e., in any state in that attribute) it delivers them in some state 
in one of the corresponding output attributes, regardless of how it acts on the 
substrate when it is presented in any other attribute. For instance, a task on 

the die substrate is  even → odd{ } ; and a constructor for it is a device that 
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must produce some of the die’s attributes contained in odd whenever 
presented when any of the states in even, and retain the property of doing that 

again. In the case of the task  6 → odd{ } it is enough that a constructor for it 

delivers some state in the attribute odd – by switching 6 with, say, 1.  

The fundamental principle. A task  T  is impossible (denoted as   T✗ ) if there is 

a law of physics that forbids its being carried out with arbitrary accuracy and 

reliability by a constructor. Otherwise,  T  is possible, (denoted by   T✓ ). This 

means that a constructor capable of performing  T  can be physically realised 
with arbitrary accuracy and reliability (short of perfection). As I said, heat 
engines, catalysts and computers are familiar examples of approximations to 

constructors. So, ‘ T  is possible’ means that it can be brought about with 
arbitrary accuracy, but it does not imply that it will happen, since it does not 
imply that a constructor for it will ever be built and presented with the right 

substrate. Conversely, a prediction that  T  will happen with some probability 

would not imply  T ’s possibility: that ‘rolling a seven’ sometimes happens 
when shooting dice does not imply that the task ‘roll a seven under the rules 
of that game’ can be performed with arbitrarily high accuracy.  
Non-probabilistic, counterfactual properties – i.e. about what does not happen, but 
could – are the centrepiece of constructor theory’s mode of explanation, on 
which this approach to thermodynamics depends. It is expressed by its 
fundamental principle: 

I. All (other) laws of physics are expressible solely in terms of statements 
about which tasks are possible, which are impossible, and why.  

Hence principle I requires subsidiary theories to have two crucial properties: 
(i) They must define a topology over the set of physical processes they apply 
to, which gives a meaning to a sequence of approximate constructions 

converging to an exact performance of  T ; (ii) They must be non-probabilistic – 
since they must be expressed exclusively as statements about 
possible/impossible tasks. The latter point may seem to make the task of 
expressing the laws of thermodynamics particularly hard, but that is only an 
artefact of the prevailing conception (which tries to cast the second law as a 
model to provide predictions of what will happen to a system evolving 
spontaneously) that makes probabilities appear to be central to the second 
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law. In fact none of the laws, in the constructor-theoretic formulation, use 
probabilistic statements.  

Principle of Locality. A pair of substrates !!S1  and !!S2  may be regarded as a 

single substrate !!S1 ⊕S2 . Constructor theory requires all subsidiary theories to 

provide the following support for the concept of such a combination. First, 

!!S1 ⊕S2  is indeed a substrate. Second, if subsidiary theories designate any task 

as possible which has !!S1 ⊕S2  as input substrate, they must also provide a 

meaning for presenting !!S1  and !!S2  to the relevant constructor as the substrate 

!!S1 ⊕S2 . Third, and most importantly, they must conform to Einstein’s (1949) 

principle of locality in the form:  

II. There exists a mode of description such that the state of !!S1 ⊕S2  is the pair 

 (ξ,ζ)  of the states3 ξ  of !!S1  and ζ  of !!S2 , and any construction undergone 
by !!S1  and not !!S2  can change only ξ  and not ζ .  

This, like many of the constructor-theoretic principles I shall be using, is 
tacitly assumed in all formulations of thermodynamics. It is pleasant that 
constructor theory states them explicitly, so that their physical content and 
consequences are exposed. 
Unitary quantum theory satisfies II, as is explicit in the Heisenberg picture 
(Deutsch & Hayden, 2000).  
Tasks may be composed into networks to form other tasks, as follows. The 

parallel composition  A ⊗ B  of two tasks  A  and  B  is the task whose net effect 

on a composite system  M⊕N  is that of performing  A  on M and  B  on N. 

When   Out A( ) = In B( ) , the serial composition  BA  is the task whose net effect is 

that of performing  A  and then  B  on the same substrate. Parallel and serial 
composition must satisfy the composition law 

III. The serial or parallel composition of possible tasks is a possible task, 
  

which is a tacit assumption both in information theory and thermodynamics, 
and finds an elegant expression in constructor theory. Note however that in 

                                                
3 In which case the same must hold for intrinsic attributes. 
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constructor theory tasks can be impossible and the composition of two 
impossible tasks may result in a possible one. In fact, that two impossible 
tasks give rise to a possible one is the signature of the existence of a 
conservation law (section 4). 

2.1. Possible tasks vs permitted processes 
 
In line with axiomatic thermodynamics, the second law of thermodynamics in 
constructor theory takes the form of what I shall call, adapting a term from 
(Buchdahl, 1966), a law of impotence: a law requiring some task to be possible, 
and its transpose to be impossible. Such irreversibility, unlike that required by 
the second law that refers to spontaneous processes, is compatible with time-
reversal symmetric dynamical laws. This fact, which has been known for 
some time (Uffink op. cit.), can be expressed rigorously in constructor theory 
because of the fundamental difference between a task being possible and a 
process being permitted.  
To explain how, I shall consider a physical system whose dynamics are 
expressible in the prevailing conception, but which also conforms to 
constructor theory. Let the system’s state space, containing all its states σ  

described but the subsidiary theory be Γ. In the prevailing conception, a 

process is represented as a trajectory – the sequence of states the system goes 

through as the evolution unfolds: 
   
P ! σt ∈Γ : ti < t < t f{ } . A process is permitted 

under the theory if it is a solution of the theory’s equations of motion; let W 
be the set of all permitted processes. Let the map R transform each state σ  

into its ‘time-reverse’   R(σ) . For example, R may reverse the sign of all 

momenta and magnetic fields. Also, define the time-reverse  P−  of a process P 

by: 
   
P− ! (Rσ)−t ∈Γ :−t f < t < −ti{ }  , (Uffink, op. cit.). The subsidiary theory is 

called time-reversal invariant if the set W of permitted processes is closed 

under time reversal, i.e. if and only if:  P− ∈W ⇔ P ∈W .  
Now consider a time-reversal invariant subsidiary theory and the constructor-

theoretic statement that the task  T  is possible, but   T
∼ is impossible. As we 

said, the second law (like any law of impotence) is expressed via a statement 
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of this kind.  We can immediately see that those two facts are compatible with 
one another: 

That  T  is possible implies that the process  Pε  corresponding to an 

approximation to a constructor   
!
C  performing  T  to accuracy ε , is permitted 

for any ε  (short of perfection). That the theory is time-reversal invariant 

implies that the process  P
−
ε  too is permitted. But, crucially,  P

−
ε  does not 

correspond to the task   T
∼  being performed to accuracy ε ; because the 

reversed time-evolution of the approximate constructor running in the 

process  Pε  is not the dynamical evolution of an approximate constructor for 

  T
∼ , to accuracy ε . Thus, the statement that  T  is possible and   T

∼  is not 
possible is compatible with time-reversal invariant dynamical laws, as 
promised. In constructor theory, laws are about tasks being possible or 
impossible, not about processes. This is why they can be exact statements, not 
contradicted by, e.g., the existence of fluctuations. 
 
Another remarkable consequence of stating thermodynamics in terms of 
possible and impossible tasks only is that need not require ‘equilibrium states’ 
to exist (defined as states that physical systems evolve spontaneously to, but 
which never change thereafter unless the external conditions change). As I 
remarked in the introduction, some existing formulations depend on this 
impossible requirement, via the so-called 'minus-first' law (Brown & Uffink, 
op.cit.). In constructor theory, it will only be necessary to require there to be a 
particular class of intrinsic attributes, which I shall call thermodynamic 
attributes. These attributes, however, need not have a definite temperature 
and include many more than equilibrium states. As explained in section 1, 
thermodynamics in constructor theory is more general than standard 
equilibrium thermodynamics: the notion of temperature need never be 
invoked. Specifically, I shall require the following principle to hold: 
 

IV. Attributes that are unchanged except when acted upon are possible. 

Such attributes will be called ‘thermodynamic attributes’: in short, they are 
attributes of a physical system that can be stabilised to arbitrarily high 
accuracy; in the case of a qubit, they include quantum states that are very far 
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from equilibrium: for instance, its pure states. The principle requires the 
possibility of bringing about such attributes to any accuracy short of 
perfection.  
 
For example, consider a glass of water with temperature x. Principle IV 
requires that the attribute x of the glass and water can be stabilised to any 
arbitrary accuracy, short of perfection. This is compatible with fluctuations 
occurring. For example, for higher accuracies, stabilisation will require 
inserting various insulating materials (part of the constructor) around the 
glass of water to keep it at temperature x to perform the task to that accuracy, 
while for lower accuracies just the glass by itself will suffice. So, principle IV 
is fundamentally different from the requirement that “equilibrium states 
exist”.  For while the former is not contradicted by fluctuations occurring, the 
latter is. Classical thermodynamics relies on the latter requirement and is 
therefore problematic, given the occurrence of fluctuations. Constructor 
theoretic thermodynamics relies on the former. This is yet another reason why 
its laws can be exact.  
 
As remarked in the introduction, although (perfect) constructors never occur 
in reality, just like equilibrium states, constructor-theoretic laws are exact 
because they are formulated exclusively in terms of possible/impossible 
tasks, not in terms of constructors. In particular, they never require perfect 
constructors to exist. Whenever requiring a task to be possible, one refers 
implicitly to a sequence of ever improving (but never perfect) approximations 
to the ideal constructor, with no limit on how each approximation can be 
improved. That there is, or there is not, a limit to how well the task can be 
performed (defining a impossible or possible task respectively), is an exact 
statement.  
 
As a consequence of laws being stated in terms of possible/impossible tasks, 
the emergence of an arrow of time and the second law of thermodynamics 
appear as entirely distinct issues (Barbour, et. al 2014; Marsland et. al., op. cit.). 
The former is about the spontaneous evolution of isolated physical systems, 
as established by, e.g., the minus-first law; the latter is about the possibility of 
certain tasks on finite subsystems of an isolated system. In line with the 
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traditions of studies in thermodynamics, I shall assume here the existence of 
an unambiguous 'before and after' in a physical transformation. This must be 
explained under constructor theory by subsidiary theories about time, in 
terms of constructor-theoretic interoperability laws (see section 3) concerning 
tasks of synchronising ‘clocks’ (Marletto&Vedral, in preparation) – not in 
terms of the ordering established by minus-first law, as in current 
thermodynamics (Marsland et. al., op. cit. ). 
 
For present purposes, I shall restrict attention to subsidiary theories that allow 
for an unlimited number of substrates to be prepared in their thermodynamic 
states; and I shall require substrates to be finite.  Having defined generic 
substrates as those substrates that occur in unlimited numbers (Deutsch & 
Marletto, 2015), I shall assume that: 

V. The task of preparing any number of instances of any substrates 
with any one of its thermodynamic attributes from generic 
substrates is possible. 

This is a working assumption about cosmology. It would be enough that it 
hold for a subclass of physical systems only, to which we confine attention for 
present purposes. 
The constructor-theoretic concept of side-effect, which will be essential in 
understanding the notion of ‘adiabatically possible’ (section 5), is then 

introduced as follows: If   A ⊗ T( )✓  for some task  T  on generic resources (as 

defined in Deutsch & Marletto, 2015),  A  is possible with side-effects, which is 

written   A✓ , and  T  is the side-effect. 

3. Constructor theory of information 
 
I shall now summarise the principles of the constructor theory of information 
(Deutsch & Marletto, 2015), which I shall use in sections 5 and 6 to define 
‘work media’ and ‘heat media’, and to distinguish work from heat. The 
principles express the exact properties required of physical laws by the 
theories of (classical) information, computation and communication. An 
important point here is that nothing that follows is probabilistic or 
‘subjective’. Information is understood in constructor theory in terms of 
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objective, counterfactual properties of substrates (‘information media’) – i.e. 
about what tasks are possible or impossible on them. 
The logic of the construction is that one first defines a class of substrates as 
those on which certain tasks are possible/impossible. In the constructor 
theory of information these capture the properties of a physical system that 
would make it capable of instantiating what has been informally referred to 
as ‘information’. Then, one expresses principles about them.  

First, a computation4 medium with computation variable V (at least two of whose 
attributes have labels in a set V) is defined as a substrate on which the task 

 Π V( )  of performing every permutation Π  defined via the labels V 

   
Π V( ) ! {

x∈V
∪ x →Π(x)}  

is possible (with or without side-effects).  Π V( )  defines a logically reversible 
computation. 
Information media are computation media on which additional tasks are 

possible. Specifically, a variable X is clonable if for some attribute  x0  of S the 

computation on the composite system !S⊕S   

   
x ,x

0( )→ x ,x( ){ }
x∈X
∪ ,  (0) 

namely cloning X, is possible (with or without side-effects)5. An information 
medium is a substrate with at least one clonable computation variable, called 
an information variable (whose attributes are called information attributes). For 
instance, a qubit is a computation medium with any set of two pure states, 
even if they are not orthogonal (Deutsch & Marletto, 2015); with a set of two 
orthogonal states it is an information medium. Apart from that definition, 
information media must also obey the principles (i.e. substantive laws) of 
constructor information theory, which I now review: 

Interoperability of information. Let  X1  and   X2  be variables of substrates   S1  

and   S2  respectively, and  X1 × X2  be the variable of the composite substrate 

                                                
4 This is just a label for the physical systems with the given definition. Crucially, it entails no reliance on 
any a-priori notion of computation (such as Turing-computability). 
5 The usual notion of cloning, as in the no-cloning theorem (Wootters & Zurek, 1982), is (1) with X as 
the set of all attributes of S.   
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  S1 ⊕S2  whose attributes are labelled by the ordered pair   (x,x ')∈X1 × X2 , 

where   X1  and   X2  are the sets of labels of  X1  and   X2  respectively, and ×  

denotes the Cartesian product of sets. The interoperability principle is elegantly 
expressed as a constraint on the composite system of information media (and 
on their information variables): 

VI. The combination of two information media with information variables  X1  
and  X2  is an information medium with information variable  X1 × X2 . 

This expresses the property that information can be copied from any one 
information medium to any other; which makes it possible to regard 
information media as a class of substrates. Interoperability laws for heat and 
work will be introduced in sections 5 and 6.   
The concept of ‘distinguishable’ – which is used in the zeroth law (in section 
6) – can be defined in constructor theory without circularities or ambiguities. 
A variable X of a substrate S is distinguishable if 

   
x → ix{ }

x∈X
∪⎛⎝

⎞
⎠
✓

  (0) 

where   {ix }  is an information variable (whereby   ix ∩ ix' = o  if   x = x '  ). I write 

 x ⊥ y  if   x ,y{ }  is a distinguishable variable. Information variables are 

necessarily distinguishable, by the interoperability principle VI. Note that 
‘distinguishable’ in this context is not the negative of ‘indistinguishable’, as 
used in statistical mechanics to refer to bosons and fermions. Rather, it means 
that it is possible to construct a ‘single-shot’ machine that is capable of 
discriminating between any two attributes in the variable. For instance, any 
two non-orthogonal states of a quantum system are not distinguishable, in 
this sense. I do not use the term ‘indistinguishable’ in this paper. 
I shall use the principle (Deutsch&Marletto 2015) that: 

VII. A variable whose attributes are all pairwise distinguishable is 
distinguishable. 

This is trivially true in quantum theory, for distinguishable pairs of attributes 
are orthogonal pairs of quantum states – however, it must be imposed for 
general subsidiary theories.  
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4. Conservation of energy 
 
In constructor theory, conservation laws cannot be formulated via the usual 
dynamical considerations. They, too, must be expressed solely as statements 
about possible/impossible tasks. As we shall see, the notion of a conserved 
quantity (and in particular energy) will refer to a particular pattern of 
possible/impossible tasks. To describe that pattern, I shall now introduce a 
powerful constructor-theoretic tool – an equivalence relation  ‘ ! ’ (pronounced 
‘is-like’) on the set of all tasks on a substrate, which, ultimately, I shall use to 
express the intuitive notion that two tasks in the same equivalence class 
‘would violate the principle of the conservation of energy by the same 
amount’. 
 

‘Is-like’ equivalence relation. Given any two pairwise tasks   A = x → y{ } ,

   B = x'→ y'{ }  , we say that   A ! B  if and only if  

   [(A~ ⊗ B)✓ ∧ (A ⊗ B~ )✓] . 

This is an equivalence relation over the set of all pairwise tasks on 
thermodynamic attributes of substrates under a given subsidiary theory. So, the 
family of all equivalence classes generated by ‘is-like’ is a partition of that set. I 

shall assume initially that each class is labeled by a vector  Δ = Δ i( )  of 

functions    Δ i : SM ⇒ℜ , where ℜ  is, for simplicity of exposition, the set of the 

real numbers, with the property that    Δ i(A) = Δ i(B),∀i  if and only if   A ! B .   

 
The physical meaning of the partition into equivalence classes is that tasks in 
the same class, if impossible, are impossible for the same reason: this is guaranteed 

by the fact that    (A~ ⊗ B)✓  and    (A ⊗ B~ )✓ . For example, suppose in the 

prevailing conception there is only one conservation law of some scalar (e.g. 

energy); in constructor theory, this corresponds to the tasks  A  and  B  that 
would both violate the conservation law by the same amount being in the 

same class. Both are impossible, but    (A~ ⊗ B)✓ and    (A ⊗ B~ )✓ because the 

two tasks balance one another when performed in parallel, so that overall 
there is no violation of the conservation law. Similarly, consider a law of 
impotence, such as the second law, requiring tasks decreasing (or increasing) 
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a given function (such as entropy) to be impossible, but their transpose to be 
possible. Then, is-like is such that tasks requiring a change in that function by 
the same amount belong to the same class.  
  
Accordingly, it is natural to regard the labels of the equivalence classes as the 
amount by which the conserved quantity (or the monotone such as entropy) 
is changed. To ensure that this identification is physically meaningful, I shall 
now show that under the additional constraints of locality (principle II), the 

functions  Δ i  must be additive. 

 
To this end, it is necessary to define another is-like relation on the set of 

thermodynamic attributes, based on the serial composition of two tasks   A
∼B  

and   AB∼  (whenever it is defined, i.e., whenever   Out A( ) = Out B( )): 

    A!
•

B ↔ [(A~ B)✓ ∧ (B~ A)✓]  
One can easily prove that this, too, is an equivalence relation on the set of all 
pairwise tasks on thermodynamic attributes, that can be serially composed. 

By the composition law,   A ! B ⇔ A!
•

B  whenever   Out A( ) = Out B( )  because: 

    A ! B ⇒ (A~ ⊗ B)(B⊗ B~ )⎡⎣ ⎤⎦
✓

⇒ A~ B( )✓ , and likewise for the transposes. 

Hence, the partitions into equivalence classes generated by   A ! B  and by 

  A!
•

B are the same whenever they are both defined. Therefore they are both 

represented by the same labelling Δ ,   A ! B  being an extension of   A!
•

B to 

the whole set of pairwise tasks on thermodynamic attributes.  
 
Properties of is-like. In order to explain how the conservation law emerges, it 
is necessary to show a number of interesting properties of is-like (which hold 
for the serial-composition version too).  

One is that if   A ! B  and   A
✓ , then   B

✓ . This is because, by the composition 
law (principle III),  

    A ! B∧ A✓ ⇒ (A~ ⊗ B)(A ⊗ I)⎡⎣ ⎤⎦
✓

⇒ B✓  
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Moreover, tasks in the same class as the unit task  I are all possible, and so are 

their transposes:     A ! I ⇒ (A~ ⊗ I)✓

∧ (A ⊗ I)✓⎡⎣ ⎤⎦⇒ A ! I ∧ A
✓

∧ A~ ✓

.  
In addition, if two tasks are in the same class, their transposes must be in the 

same class, too:   A ! B ⇒ A∼ ! B∼ . Thus, one can set   Δ i A( ) =αΔ i A( ) + k,∀i , for 

some real  numbers  α ≠ 1  and non-zero k (representing a rescaling and a 

uniform translation). Since    Δ i (A~ )~( ) = Δ i A( ) =α 2Δ i A( ) + (α +1)k , it must be 

 α = −1 , whereby I choose k=0. This in turn implies that 

    Δi I( ) = 0 ⇔Δi A( ) = −Δi A∼( ) . 
 

Let me temporarily drop the index i. Consider any two substrates   M1 ,M2 , and 

the pairwise tasks 
   
A, B,C, D ∈SM1

∪ SM2
,
 
 such that   A ! B∧C ! D . It follows 

that   A ⊗C ! B⊗ D . Thus, by locality, I require that 

  Δ A ⊗ B( ) = Φ Δ A( ),Δ B( )( ) , for some function Φ  with the property that:  

   

Δ A ⊗ I( ) = Φ Δ A( ),0( ) = Δ A( ) = Φ 0,Δ A( )( )
Δ A ⊗ A∼( ) = Φ Δ A( ),−Δ A( )( ) = 0 = Φ 0,0( ) = Δ I⊗ I( )

 

  

Φ Φ Δ A( ),Δ B( )( )( ),Δ C( )( ) = Φ Φ Δ C( ),Δ A( )( )( ),Δ B( )( )
= Φ Φ Δ B( ),Δ C( )( )( ),Δ A( )( )+ cyclic permutations

 

where the last two lines follows from the associativity of parallel-composing 
tasks with one another. In order to satisfy these constraints I shall pick the 

solution   Δ A ⊗ B( ) = Φ Δ A( ),Δ B( )( ) = Δ A( ) + Δ B( )  – which requires additivity 

of the corresponding components of the vector of labels Δ . 

Now, since, for each component,   Δ A ⊗ B( ) = Δ A ⊗ B( ) B⊗ B∼( )( ) = Δ AB( ) , 

we have the same additivity property with respect to serial composition:  

 Δ AB( ) = Δ A( ) + Δ B( ) . Again by locality, I can assume that there exists a 

function     F :Δ T( ) = Δ(F( y); F(x)) . Since for any two serially-composable tasks 

   A = x → y{ }, B = y → z{ } it must be: 

    Δ AB( ) = Δ(F(y), F(x))+ Δ(F(z), F(y)),∀y . 
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Hence     Δ A( ) = F(y)− F(x) . The additivity of  Δ A( )  implies the additivity of 

the function  F , too:    F((x,y)) = F(x)+ F(y) .  

 
Now, it is easy to prove that there can only be three kinds of equivalence 
classes. One kind consists of only one class, containing the unit task and other 

possible tasks only, and it is labelled by   Δi = 0,∀i . Given a representative 

element  A  in that class, its transpose   A
∼  is in that class too, and it is possible.  

Next is the kind of class with the property that each task  A  in the class is 

impossible, and its transpose, in the class labelled by    −Δi A( ) ,∀i , is also 
impossible. A familiar example where these classes are non-empty is when 
there are tasks that violate a given conservation law by the same amount.  

 
Finally, there is the kind of class with the property that each task in it is 
possible, but its transpose is impossible. Such a class reflects the presence of a 
“law of impotence”, such as the second law of thermodynamics: tasks in the 
same class change entropy by the same amount. See the figure. 
 
 
 
 
 
 

 
 
 
 
 
 
However, it is up to the subsidiary theory to say which one of those sectors in 
figure 2 is populated. For example, in the absence of a law of impotence, the 
first and second sector only would be populated. In thermodynamics it is 
customary to treat the simplified case that there is only one conservation law 
(namely that of energy), and one law of impotence (the second law). I shall do 

the same. Then there will be only two additive functions    U (x),Σ(x)  such that 

 
 

 

  

Figure 2 
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   F(x) = U (x),Σ(x)( )  and    Δ(T) = ΔU (T),ΔΣ(T)( ) . Thus in the first kind of 

class, containing the identity,   ΔU = 0 = ΔΣ . In my notation, U will be the 
function involved in the conservation law. At this stage U could be any 
conserved quantity, not necessarily energy. It is energy only if it satisfies the 
first and second law of thermodynamics, as explained in sections 5 and 6. 

(The second law, requiring that the classes with non-zero ΔΣ  be non-empty, 
corresponds to requiring that there be what in classical thermodynamics are 
called ‘thermodynamic coordinates’, in addition to ‘mechanical coordinates’). 
But in view of the above-mentioned simplification, I can call U ‘energy’. The 

principle of conservation of energy can be then stated as follows: 
 

VIII. The task of changing the U of any substrate is impossible. 

This conservation law requires the second kind of class (figure 2) to exist, 

containing tasks   T = x → y{ } where    ΔU (T) ≠ 0 , because, by VIII, 

    U (x) ≠U (y)⇒ x → y{ }✗

, y → x{ }✗

. For such tasks  T ,   ΔΣ(T)  may or may not 

be zero. In the general case, the function ΔΣ  will describe the remaining kind 

of class, generated by a law of impotence – i.e., those classes with tasks  T  
that are possible, but have an impossible transpose (the third kind in figure 2). 

For tasks in those classes it must be   ΔU = 0 , because  T  is possible, and 

 ΔΣ ≠ 0 . Nothing in the principles so far requires the subsidiary theories to 
permit such tasks, but as we shall see, the second law of thermodynamics will 

precisely require them to do so; ΔΣ  will then be connected to what we have 
been calling ‘entropy’ (see section 6).  
 
Another interesting consequence of the difference between a task being 
impossible and a process being not permitted, is that a conservation law stated 
in these terms implies that U of a substrate must be bounded both above and below 
– a fact that must be otherwise imposed separately in the prevailing 

conception (Deutsch, 2013). For, suppose that    U (y)−U (x) = δ  were not 

bounded above, and that there are no other reason why  x → y{ }  is 

impossible. Then the task 
   

Aδ ⊗ x → y{ }( )
✓

 would be possible, for any task  Aδ
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:   ΔU Aδ( ) = δ ,   ΔΣ Aδ( ) = 0  because 
   
Δ Aδ ⊗ x → y{ }( ) = 0 . The first substrate, 

were U not bounded, would still have the ability to perform the task  x → y{ } , 

any number of times: it would therefore qualify as a constructor for the task

 x → y{ } , which would therefore be possible – contradicting the principle of 

conservation of energy.  A similar contradiction follows from assuming that it 
is not bounded below. Thus, U must be bounded above and below for any 
substrate.  
 
Energy being bounded above is an unfamiliar requirement. But in this context 
it is a consequence of the fact that the conservation law is about the energy of 
a substrate – i.e., a physical system that can be presented to a constructor. For 
there exists an energy value beyond which any physical system changes so 
drastically, for instance, by turning into a black hole or a vast plasma cloud – 
that no single (even idealised) constructor could accept it as input for 
arbitrarily large energies.  

5. The first law of thermodynamics 
 

I shall now recast the notion of adiabatic accessibility (Lieb & Yngvason, op. cit.) 
in constructor theory, in exact terms. To this end I introduce an exactly defined 
class of physical substrates, which I shall call work media, that generalise the 
‘weight in a gravitational field’ that appeared in the original definition of 
adiabatic accessibility (see section 1.2).  The first law will then be stated as the 
requirement that such media be interoperable, following Carathéodory’s 
original formulation – i.e., that all ways of ‘doing work’ are interchangeable 
with one another.  

Work Media. A work medium M with work variable 
   
W = w

1
,w

2
,...,w

N{ } is a 

substrate whose thermodynamic attributes 
   

w
1
,w

2
,...,w

N{ }  have the property 

that:  

1.  
   

w
i
→ w

j{ }✗

 for all i,j.  

2. For any pair of adjacent attributes 
   

w
n
,w

n+1{ }⊆ W :  
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a. 
     

w
n
→ w

n+1{ } ! w'
n
→ w'

n+1{ }  for all adjacent pairs of attributes 

   
w'

n
,w'

n+1{ }⊆ W  ; 

 

b. For some attributes    x ,x '∈W  and, crucially,
   
x

0
∈ w

n
,w

n+1{ } : 

    
w

n
,x

0( )→ w
n+1

,x( ) , w
n+1

,x
0( )→ w

n
,x '( ){ }✓  

c. If 
   
w

n
= a

n
,b

n( ) ,wn+1
= a

n+1
,b

n+1( )  for some thermodynamic 

attributes 
   

a
n
,b

n
,a

n+1
,b

n+1{ } , then the variables 
   

a
n
,a

n+1{ }  , 

   
b

n
,b

n+1{ } separately satisfy all the above conditions.  

Condition 1 requires that 
   
ΔU Ti ,j{ }( ) ≠ 0,∀i, j : for, by the conservation law 

VIII (and under the simplifying assumption) a necessary condition for both a 
task and its transpose to be impossible is that they would change the U of 
their substrate. 
Condition 2a implies that adjacent attributes in a work variable are “equally 

spaced”: 
   
ΔU Ti ,j{ }( ) = Δ  for all adjacent i,j.  

Whenever    ΔU(T) = ΔU(T')  for some pairwise tasks  T  and  T'   over some 
two-fold variables V and V’, I shall say that V is U-commensurable with V’, and 

that  T  is U-commensurable with  T' . 

Condition 2b is the key counterfactual property that singles out substrates 
such as weights. It requires that it is possible to perform a swap of any two 

adjacent attributes 
   

w
n
,w

n+1{ } of M with a side-effect on a replica of the same 

substrate, initialised so that W is sharp with the same value – i.e., the 

substrate holds either a sharp  wn
or a sharp

   
w

n+1
. I shall call ‘work attributes’ 

the attributes in the variable  W '⊂ W  with the property that for any two 

adjacent attribute  wn  
,   wn+1

∈W ' , property 2b is satisfied with both  x0
= w

n
 

and   x0
= w

n+1
. 
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The classical-thermodyamics notion of ‘mechanical coordinates’ (section 1) 
can now be identified with the set of labels for each attribute in a work 
variable, thus becoming physically meaningful and exactly defined. A 
comparison with existing thermodynamics will explicate how: 
 
Clearly, a quantum system with any number greater than 3 of equally spaced 
energy levels does satisfy the definition of work media: its work attributes are 
all except the ones labeled by extremal energy values. For instance, a weight 
in a gravitational field, with three distinct ‘heights’, is a work medium.6 
Classical thermodynamics offers also a key example of substrates that do not 
satisfy that condition for work media. Consider a quantum system with a 

variable containing two different thermal states,  ρ1 ,ρ2{ }  – i.e., with two 

different temperatures 1 and 2. The reason why this is not a work medium is 
that: 
 

   
ρ

1
,ρ( )→ ρ

2
,ρ

x( ) , ρ2
,ρ( )→ ρ

1
,ρ

y( ){ }✘ ,∀ρ∈ ρ
1
,ρ

2{ }  

(where 
  
ρ

x
,ρ

y
 are allowed to be any two other quantum (pure or mixed) states 

with different mean 7
 energies from the initial ones, as required by 

conservation of energy). Whatever the state ρ  may be between  ρ1
,ρ

2
, the 

swap with that constrained side-effect, plus the conservation of energy, would 

require a thermal state with a given temperature,  ρ,ρ( ) , to be changed to one 

where there is a temperature difference, such as 
  
ρ,ρ

x( )  – which is forbidden 

by the second law in classical thermodynamics. This is a crucial difference 
between a system with ‘mechanical coordinates’ only (e.g. a weight in a 
                                                
6  Work media necessarily have finite, or countably infinite, work variables. 
Continuous spectra can be approximated to arbitrary accuracy by composing a 
number of such physical systems.  
7 A quantum thermal state with a given mean energy corresponds, in constructor 
theory, to a thermodynamic attribute (i.e., one that can be stabilised to arbitrary 
accuracy – not the result of some spontaneous thermalisation process of an isolated 
system.) 
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gravitational field), and one having thermal states (e.g. a reservoir with a 
range of possible temperatures). This difference can be stated exactly only by 
expressing the counterfactual properties of that system.  
 
The only stationary quantum states of a single quantum system (i.e., diagonal 
in the energy basis) that qualify as work attributes of a work variable are pure 
eigenstates of the unperturbed Hamiltonian of the system (see appendix). 
This shows that the above definition of work media is consistent with existing 
thermodynamics, and that it is a good candidate to provide foundations for 
the new definition of adiabatic accessibility.  
 
Condition 2c (mirroring the requirement that there are no other conservation 
laws) rules out from the class of work variables of composite systems where 
the change in U is not the only one taking place. For, in the presence of a law 
of impotence, a task and its transpose could both be impossible, but a change 
in the other label of the equivalence classes, Σ , might take place too. For 

instance, the variable of the composite system    (U+ ,Σ+),(U0 ,Σ0),(U- ,Σ-){ } , 

where U can be thought of as being internal energy and Σ  can be thought of 
as being classical thermodynamics’ entropy, would satisfy conditions 1-2.b. 

However, it does not satisfy conditions 1-2c, for
    U+ ,U0 ,U-{ }

 
satisfies 

properties 1-2b while   Σ+ ,Σ0 ,Σ-{ }does not satisfy property 2a.  

It follows immediately that the minimal work variable in the presence of a 
single conservation law is one that has three thermodynamic equally spaced 
attributes, labelled by different values of U. Note that a perfect work medium 
need not exist in reality: it is enough that they be approximated arbitrarily 
well. Such a medium might be made, for instance, as a composite system of 
several systems with energy spectra that are not equally spaced. 
Work variables are information variables. Condition 2b – requiring what I 
shall call the ‘swap’ property – provides an unexpected, illuminating 
connection between thermodynamics and information theory: any sub-

variable 
   

w
n
,w

n+1{ }  of a work variable
 

is distinguishable, in the exact, 

constructor-theoretic sense of section 3. To see how, recall that (Deutsch & 
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Marletto, 2015) any two disjoint intrinsic attributes x and x’ are ensemble 
distinguishable, which means the following.  

Let   S
n( )  denote a physical system     S⊕S⊕…S

n  instances  
 consisting of n instances of S, 

and   x n( )  the attribute     x ,x ,…x( )
n  terms! "# $#

 of   S
n( ) . Denote by  S

∞( )  an unlimited supply of 

instances of S. This is of course a theoretical construct, which does not occur 
in reality. That x and x’ are ensemble-distinguishable means that the 

attributes  x ∞( )  and   x ' ∞( )  of  S
∞( )  are distinguishable. In quantum theory, this 

corresponds to the fact that any two different quantum states are 
asymptotically distinguishable – a property at the heart of so-called quantum 

tomography. Now, let    z ∈ wn ,wn+1{ }⊆W , where W is a work variable of some 

work medium. By property 2b it is possible to apply the swap operation to the 
work medium any number of times, and the output would be a composite 

work medium   M⊕M⊕M...  with the attribute   
wn+1 , x, x ', x…( )  if   z = wn ; and 

with the attribute 
  

wn , x ', x, x ',…( ) if    z = wn+1 . Thus, preparing the attributes  x(∞)  

and   x '(∞) would be a possible task, because of the assumption V about 
unbounded number of thermodynamic attributes being preparable from 
generic resources. Those attributes can be constructed to arbitrarily high 
accuracy, short of perfection, using a finite number of substrates for each 
accuracy. The attributes x and x’ are intrinsic thermodynamic attributes, so 

that   x(∞) ⊥ x '(∞) . Thus, by preparing   z (∞)  from    wn ,w n+1{ }  one could distinguish 

  wn  from    wn+1 . From this ‘pairwise’ distinguishability of its attributes it 

follows, via the principle VII, that a work variable is a distinguishable 
variable. Thus, it is an information variable (Deutsch and Marletto, 2015). 
Hence all work media are information media – with their work variable being an 
information variable.   
 
In general, the fact that the swap on a pairwise computation variable such as 

   
w

n
,w

n+1{ }  
is possible need not imply that the variable is distinguishable. For 

instance, any two non-orthogonal quantum states can be swapped (Deutsch 
&Marletto, 2015). It is the presence of a conservation law that requires an 
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ancilla to perform a computation on attributes labeled by different values of 
the conserved quantity. A record of the state being swapped is left in the 
ancilla, whereby it is possible to distinguish the attributes in the work 
variable. This is the origin of the connection between a conservation law and 
information theory. 
 
Interoperability of work media. Despite property 2a, two U-commensurable 
work variables belonging to different work media are not required, by their 
definition alone, to be such that the pairwise tasks over them are like one 
another. The first law of thermodynamics requires them to be, by requiring there 
to be a unique class of work media – as follows: 
 

I. Given any two work media  M1 ,M2  with commensurable work 

variables   W (1) ,   W (2) : 

i. For any adjacent pair
   

w,w'{ }⊆ W (1)  

 
   

 
   

w,x
0( )→ w',x( ) , w',x

0( )→ w,x '( ){ }✓    (1) 

   

for some attributes    x ,x '∈W (2)  and
   
x

0
∈ w,w'{ }⊆ W (1) ; and likewise 

when the labels 1 and 2 are interchanged.  

ii. The composite substrate M1 ⊕ M2  is a work medium, with variable 

  W ⊆ W (1) ×W (2) , where W is obtained by a relabeling of   W (1) ×W (2)  
where attributes with the same U are assigned the same label.  
 

Property (i) implies immediately that pairwise tasks defined on any two 
commensurable work variables are like one another, and that the task of 

transforming any two attributes in   W ⊆ W (1) ×W (2)  having the same energy U 

into one another is possible. From now on, given a work medium  M1 , any 

substrate  M2  that satisfies equation (1)  in property (i) above I shall call a 

work-like ancilla for  M1 . Property (ii) is an interoperability law for work media – it 
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requires the composite system of any two work media to be a work medium, 
which captures the intuition that a single battery can be substituted for two 
batteries of appropriate capacity. Together, they capture the content of the 
traditional formulation of the first law, that all ways of doing work are 
equivalent to one another (see the introduction). Two different work media 
with commensurable variables, such as a weight and a spring, are 
interchangeable with one another in this sense. 
 
Quasi-work media. Work media are very special kinds of substrates, which I 
shall use in order to generalise the notion of adiabatic accessibility. However, 
they do not exhaust all physical systems that in classical thermodynamics we 
would characterise as “having mechanical coordinates only”. For instance, in 
the latter category we would include a quantum system with exactly two 
energy levels, but the latter would not qualify as a work medium (because it 
does not allow for the swap property 2.b). Thus, it is useful to introduce a 
class of closely related substrates, quasi-work media, any pair of whose 
attributes can be swapped via a side-effect on a work variable; but which 
need not be usable as work-like ancillas – i.e., they need not be usable as a 
side-effect for the swap (condition 2b) that defines work media. As we shall 
see, swapping their attributes in that way only changes their U (and not the 
possible other labels related to a law of impotence) – so, they too can be 
characterised as having only mechanical coordinates.   

A quasi-work medium is a substrate with thermodynamic attributes   x ,y{ }  

(called quasi-heat attributes) such that    x → y{ } ! w→ w'{ } for some work 

variable   w,w'{ } . All work media are quasi-work media with any pair of 

attributes in their work variables. Conversely, two-level system qualifies as a 
quasi-work medium, but not, as we said, as a work-medium. We shall see 
another example of a quasi-work medium in section 6.  (See also table 1 for an 
informal summary of these notions). 
 
Adiabatic possibility. We are now ready to give the generalisation of 

adiabatic accessibility, in constructor-theoretic terms. The task 
  
T = x → y{ }  is 
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adiabatically possible, which I write as 
  

x → y{ }
✓

 if it is possible with a side-

effect task over work variables only:  

   
x → y{ }⊗ w

1
→ w

2{ }{ }✓ .
 

Vice-versa, it is adiabatically impossible, which I denote by 
  

x → y{ }
✗

, if  

   
x → y{ }⊗ w

1
→ w

2{ }{ }✗

 

for all work variables 
  

w
1
,w

2{ }  . (Hence, whenever a task is possible it is also 

adiabatically possible, with a trivial side-effect (consisting of the unit task on 
some work attribute)). 
This definition replaces Lieb & Yngvason’s. It is more general and it is exact. 
It now has physical content, for work media are defined via statements about 
possible/impossible tasks only.  

Because of interoperability of work media, it is immediate that
    

T✓  and 

   T∼( )✓ for any task 
   
T = w

1
→ w

2{ }   
whose input/output attributes belong to a 

work variable, or to a quasi-work variable (but not necessarily for a work-like 

ancilla). The second
 
law will require the existence of tasks for which

   
T✓ , but 

  T
✘ – and hence, a new class of substrates.  

6. The second law of thermodynamics 
 

The notion of adiabatic possibility, which has generalised and made rigorous 
the notion of adiabatic accessibility, can now be used to state the second law 
of thermodynamics, in an exact and scale-independent way. To that end, I 
shall first introduce the notion of ‘heat’, via the powerful constructor-theoretic 
method of defining a class of substrates with certain counterfactual 
properties, obeying another interoperability law. Once more, this definition is, 
unlike that of classical thermodynamics, based on exact statements about 
possible/impossible tasks. To that end, I shall first introduce an auxiliary 
class of substrates – that of quasi-heat media.  
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Quasi-heat media. A quasi-heat medium is a substrate with a variable  Q  whose 

thermodynamics attributes have the property that 
   
∀ h,h'{ }⊆ Q , 

   
h → h'{ }✓ , 

but 
   

h'→ h{ }✘ .  Q is called a quasi-heat variable. 

 
From the interoperability of work media, it follows immediately that a quasi-
heat medium is not a work medium. If it were, then it would be possible to 
swap its heat attributes adiabatically, by the first law of thermodynamics 

(property	(i)),	contrary to assumption. For the same reason, it is impossible for 
a quais-heat medium to be a quasi-work medium.  
 
The second law will require the subsidiary theory to permit a particular kind 
of quasi-heat media, as we shall see. To introduce them it is helpful to define, 

given a variable H, the symmetric variable   H '⊆ H × H  of the composite 

substrate M⊕M  with the property that its attributes are invariant under the 

swapping the two substrates. So, for instance, if 
  
H = h,h '{ } ,

 
then 

  
H ' = (h,h),(h ',h '){ } .  

Heat Media. A heat medium with heat variable H is a quasi-heat medium M 

whose quasi-heat variable  H  has the following additional properties: 

1. Each attribute   h ∈H  is not distinguishable from any other 
thermodynamic attribute. 

2.  M⊕M  is a quasi-heat medium with the symmetric 

variable   H '⊆ H × H  

3. For any pair of attributes 
   

h,h'{ }⊂ H  there exists   hF
∈H

such that  M⊕M  is a quasi-work medium with variable 

  
(h' ,h),(h

F
,h

F
){ }  (i.e., 

    
(h' ,h)→ (h

F
,h

F
){ } !W for some work 

variable  W ). 
4. There is no work medium W such that M is a work-like 

ancilla for W. 
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An example of attributes that would satisfy condition 1 are thermal states: 
since they have support on the set of all eigenstates of energy of a quantum 
state, they are not perfectly distinguishable by a ‘single-shot’ measurement 
from any other quantum state, and thus are not distinguishable according to 

the constructor-theoretic definition 8  (section 3).  Condition 2 is a 

generalisation of the standard property that it is impossible to ‘extract work’ 
from thermal states, no matter how many replicas of a substrates are available 
(this is also called complete passivity, (Skrzypczyk, 2015)).  Condition 3, 
conversely, requires there to be ways of ‘extracting work’ from certain other 

states of a composite substrates involving thermal states. For instance,   h,h '( )  

could be the attribute of a composite substrate of two finite heat reservoirs, at 

different temperatures   h,h ' , with the same heat capacity, in which case the 

attribute    h
F
,h

F( ) is the attribute of those two reservoirs having the same 

temperature   hF
= hh ' . It is well known that it is possible to transform the 

substrates made of the two reservoirs from the former attribute to the latter 
and vice-versa, adiabatically, by running a “reversible” heat engine  
(reversible in the sense of classical thermodynamics: one that has no net 
change in entropy), or a refrigerator, between the two reservoirs. The 
adiabatic side-effect would be, respectively, a weight being raised (to absorb 
the work done by the heat engine in depleting the temperature difference in 

  h,h'( ) ); and a weight being lowered to power the refrigerator which can 

transform    h
F
,h

F( )  to   h,h'( ) . Note however that constructor theory gives us an 

interesting new insight: because of the requirement that   h ⊥ h' , the task 

   
h,h',w

0( )→ h
F
,h

F
,w( ) , h

F
,h

F
,w

0( )→ h,h',w'( ){ }  

must be impossible for any work attributes   w0
,  w ,   w' . If it were possible, 

then   h ⊥ h' , (because work variables are distinguishable) – contrary to 
assumption. Thus, although there can be a constructor that performs each 

                                                
8 For instance, a thermometer cannot discriminate to arbitrarily high accuracy two quantum states with 
different Boltzmann distributions (i.e. with two different temperatures), for they are not orthogonal 
states. In constructor theory, this fact is shown not to be accidental, but essential to the nature of heat. 
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task separately, as we said, it is impossible to have a constructor that would 
perform their union.   
 
The meaning of condition 4 becomes clear when one examines the substrates 
it rules out. Let us consider a heat medium M, with the attributes 

   
h
+
,h

0
,h

-{ }⊂ H , that violates it – i.e., it is a work-like ancilla. Then, for some 

work medium M with some work variable    
W ⊇ w

+
,w

0
,w

−{ }  (such that 

attributes with the same suffix have the same energy U): 
 

   
w

+
,h

0( )→ w
0
,h

+( ) , w
0
,h

0( )→ w
+
,h

−( ){ }✓  

 

which would imply that 
   

w
+
,h

0( )→ w
0
,h

+( ){ }✓ , w
0
,h

0( )→ w
+
,h

−( ){ }✓ . Thus, 

condition 4 rules out, from the possible assignments of adiabatically 
possible/impossible tasks on any 3-fold heat variable that are compatible 
with the definition of a heat medium, that which would require those two 
tasks to be possible (see figure 3, case (b)).  
 

 
This property of heat 
media will be important in 
deriving the Kelvin 
statement of the second 
law in this constructor-
theoretic framework 
(section 7). Note that in 
classical thermodynamics 
that assignment, and also 
that corresponding to case 
(c) in figure 3, is ruled out 
by an ancillary law 
(Buchdahl, 1966; Marsland, 
et. al., op. cit., Lieb & 

 
Figure 3 Possible assignments of adiabatically possible 
tasks on a heat medium whose attributes (+,0,-) are 
labelled by decreasing values of energy. (The arrows 
represent adiabatically possible tasks, their transpose 
(not represented) is adiabatically impossible by 
definition of heat media.) 
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Yngvason, op. cit.) requiring that all adiabatically possible tasks whose 
transpose is adiabatically impossible either always increase (case (a)) or 
always decrease (case (d)) the energy. In constructor theory, that law is not 
necessary.  
 
Interoperability of heat. Heat media will be required to be a class of 
interchangeable substrates – again, by an interoperability law. The 
interoperability law for heat media requires that:  

 

IX. The composite system of any two heat media with variables   H1
,H

2
 whose 

attributes have the same is-like labels, is a heat medium with heat variable 

  H '⊆ H
1
× H

2
. 

The interoperability principle for heat requires therefore that the composite 
substrate of any two heat media, whatever their physical details, still satisfies 
properties 1–4 above. Just like other interoperability laws, it is a new physical 
principle. It is tacitly assumed in classical thermodynamics, but has this 
elegant expression in constructor-theoretic terms. Note that in the prevailing 
conception’s approach to thermodynamics one usually demonstrates, given a 
particular subsidiary theory, that there exist models of physical systems 
displaying properties such as those required by the conditions 1-4. Here, 
instead, the logic is to express those properties exactly, and then illustrate the 
principles that substrates that classify as heat, work, quasi-work and quasi-
heat media must obey.  
From now on, whenever a subsidiary theory requires a pattern of 
possible/impossible tasks on thermodynamic attributes conforming to there 
being a heat medium with heat variable H, I shall say that ‘A heat 
medium/variable H is mandated’. Likewise for the other categories introduced 
so far: work, quasi-work and quasi-heat media. See table 1 for a summary of 
the intuitive meaning of each of those categories.  
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Table 1: Informal description of substrates appearing in constructor-theoretic 
thermodynamics. (Terms in boldface italic denote media with direct analogues in classical 
thermodynamics.) 

 
The second law of thermodynamics. We are now ready to state the second 
law of thermodynamics, in exact terms, using the notion of heat media, as 
follows: 

II. Consider any two attributes x and y in any two work variables of the 
same medium. That substrate is also a heat medium with a heat 
variable H such that it contains a pair of heat attributes with the same 
energies as x and y. 
 

This is the constructor-theoretic generalisation of Carathéodory’s second law.9 

It requires that whenever a subsidiary theory mandates a work medium 
(whose attributes, recall, can be swapped only by changing their ‘mechanical 
coordinates’, with side-effects on work media only) – then given any pair of 
attributes in its work variables (including pairs with the same energy) it must 

                                                
9 Note that the statement is constructor-theoretic because it requires the subsidiary 
theory to mandate a certain heat variable – i.e., that certain tasks be possible and 
impossible. 

Work media are objects like weights: they must have at least three distinguishable 
attributes with different energy, characterised by a particular ‘swap’ property.  
Quasi-work media include work media, but they need not have that swap property – 
e.g. a quantum system with only two energy states.  The task of changing any of their 
attributes into any other is adiabatically possible. 
A work-like ancilla is a substrate with at least three thermodynamic attributes that 
can be used as a side-effect to swap work attributes of another system; but the task of 
changing any one of its attributes into any other may be adiabatically impossible. 
A quasi-heat medium is a substrate with at least a pair of attributes such that the task 
of changing one into another is adiabatically impossible, but has an adiabatically 
possible transpose. 
Heat media are quasi-heat media with at least three thermodynamic attributes that 
are not distinguishable from any other attribute and have certain additional 
properties (e.g. a quantum system with three different temperature states). 
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also mandate a pair of heat attributes in a heat variable with the same 
energies. This implies that for any pairwise task on a pair of attributes 
belonging to work variables (which, by definition, must be such that either 
both it and its transpose are possible, or they are both impossible) there is a 
corresponding U-commensurable task on a pair of heat attributes  (which, by 
definition of heat media, must be adiabatically possible, and its transpose 
adiabatically impossible; or vice-versa). This is reminiscent of Caratheodory’s 
notion of there being adiabatically inaccessible points in any ‘neighbourhood’ 
of any point in the thermodynamic space. However, unlike the former, it does 
require the set of thermodynamic attributes to be a continuum.  
Note that no notion of entropy nor temperature has been mentioned so far; in 
particular, as already mentioned, this is not equilibrium thermodynamics. To 
the end of introducing an equivalent of entropy, let me now define another 
equivalence relation.  
 

Adiabatic is-like. We say that  A ≅ B  (read:  A  ‘is adiabatically-like’  B ) if and 
only if  

   [(A~ ⊗ B)✓ ∧ (A ⊗ B~ )✓] . 

The same steps as in section 4 show that this is an equivalence relation on the 
set of all pairwise tasks on thermodynamic attributes. Under the simplifying 
assumption of a single conservation law and a single law of impotence (see section 

5), the case where both  T  and its transpose are adiabatically impossible does 

not occur. 10 Consequently, instead of a vector of labels it is enough for 

present purposes that there is a single real-valued, additive function   Δ A T( )  

labeling the different classes, with the property that      Δ A T( ) = 0 ⇔ T✓ ∧ T∼( )✓ . 

Let 
  
T = x → y{ } . Once more, by locality, I shall assume that 

   Δ A(T) = ΔS(T) = S( y)− S(x)  where S is an additive, real-valued function 

whose domain is the set of thermodynamic attributes of all substrates.  
 
                                                
10 This simplifying assumption implies that if a task  T  is adiabatically impossible, 
then its transpose is adiabatically possible. This property is essentially the 
comparability axiom of Lieb & Yngvason, but I shall not require it in this treatment.  
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Entropy. Now, one can show that the function S has the following properties, 
which allow one to identify it as the constructor-theoretic generalisation of 
traditional entropy: 

(i)      ΔS(T) = 0 ⇔ T✓ , T∼( )✓ ⇔ T ≅ I .  

Therefore, any task 
   
T = w

1
→ w

2{ }  whose input/output attributes are work 

attributes belongs to the class labeled by    ΔS(T) = 0 .  

In addition, one can show that the function Σ  introduced in the is-like 
relation (section 4) is related to S, as follows: 

(ii)    ΔΣ(T) ≠ 0⇒ΔS(T) ≠ 0 .  
This is because: 

     

T✓ ⇒ T✓ ∧ ΔU T( ) = 0 = ΔU T∼( )
T

∼ ✗ ⇒ T∼✓ ∨ T∼✗ .  

The first line follows from the fact that whenever a task is possible, it is also 
adiabatically possible (the side-effect task being the unit task).  The second 
line follows from the assumption that there is only one law of impotence. 

However, the option    T
∼✓ is not viable. For that would imply that either 

   T∼( )✓  (which contradicts the premises) or that 
    T∼ ⊗ w1 → w2{ }( )✓ for some 

work variable   w1 ,w2{ } . However, this would require that     ΔU T∼( ) ≠ 0 , by 

additivity of U, contrary to the assumptions. This proves (ii). 

(iii)     ∀T : T✓ ∧ T∼( )✗ ,    ΔS(T) ≠ 0 . Because, by property (ii): 

     

T⊗ W( )✓ ⇒ΔU T⊗ W( ) = 0 = ΔU T⊗ W( )∼( )
T∼ ⊗ W( )✗ ∧ ΔU T⊗ W( )∼( ) = 0,∀W⇒ΔΣ T⊗ W( ) ≠ 0⇒ΔS T⊗ W( ) ≠ 0

 

 

Since    ΔS W( ) = 0 , by additivity:     ΔS T( ) ≠ 0  . 
 

Thus, by property (iii), whenever a task  T  is adiabatically possible, but its 

transpose is not,    ΔS T( ) ≠ 0 ; we can therefore identify it as the constructor-
thereotic generalization of entropy. Just as in the case of Caratheodory’s and 
Lieb&Yngvason, assuming additional requirements, e.g. about the continuity 
of the space of thermodynamic points, allows one to show that the function 
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has the property that whenever a task  T  is adiabatically possible, but its 

transpose is not, then    ΔS T( ) > 0 . However, unlike in those cases, in 
constructor theory the physical content of the second law resides in the notion 
of adiabatic possibility, not in the properties of the entropy function. Thus, for 
present purposes, I shall not assume any of those additional requirements. 
Because of property (ii), the partition into equivalence classes generated by S 
refines that generated by Σ . Therefore, one can uniquely identify a class 
generated by both the is-like and the adiabatic is-like equivalence relation by 

the labels    Δ(T) = ΔU (T),ΔS(T)( )  where U is the function defined via the is-

like relation and S is that defined by the adiabatic-is-like relation. The 
combination of the first and second law imply that, if there are possible and 
impossible tasks at all, then all kinds (see figure 2) of the is-like equivalence 
relation are present. 
 
The Zeroth Law of Thermodynamics. As I said, the zeroth law of 
thermodynamics was an ‘afterthought’ in classical thermodynamics (Atkins, 
2007): it was proposed, historically, after all the others, in order to introduce 
the notion of temperature. In constructor theory it is, too. However, its 
meaning and implications are somewhat different – in particular, they do not 
require the existence of the temperature in the traditional sense; nor is it about 
equilibration. In my formulation the zeroth law is: 

X. Given any thermodynamic attribute x, 
  

x → h{ }✓  for any heat attribute h 

having the same energy as x. 

That is to say, it is possible to convert any thermodynamic attribute into a 
heat attribute – i.e., one that cannot be distinguished from any other attribute. 
An example of such task might be that of converting some amount of purely 
mechanical energy completely into heat by ‘rubbing’. However, note that this 
law differs both in form and content from existing ancillary laws in classical 
thermodynamics (Buchdahl, 1966): it is not about spontaneous processes 
occurring (i.e., equilibration), but about the possibility of a task; in addition, it 
does not require there to be a definite sign for the change in energy 
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accompanying an adiabatically possible task, with an adiabatically impossible 
transpose.  

7. Kelvin’s statement of the second law 
 

I shall now prove that the constructor-theoretic version of Kelvin’s statement, 
that “heat cannot be converted entirely into work”, follows from the laws of 
thermodynamics expressed above, in the form: 

The task 
 

h → w{ }  is impossible for every work attribute w and heat 

attribute  h . 

For, suppose that task were possible for some such attributes: 
  

h
0
→ w

0{ }✓  

with    U(h
0
) =U(w

0
) . Consider a 3-fold work variable   

w
+
,w

0
,w

−{ }  
including 

  w0  
(which must exist by definition of work attribute, section 5).  By the 

second law there must be a heat variable H with subvariable 
   

h
+
,h

0
,h

-{ }⊆ H   

with    U(h
+
) =U(w

+
)  and    U(h

−
) =U(w

−
) .  

Now, recall, there are three possible cases of assigning adiabatic 

possibility/impossibility to any three-fold sub-variable 
  

h
+
,h

0
,h

-{ }  of a heat 

variable  (see figure 3). In all such cases a contradiction is reached. Suppose 

first that 
  

h
0
→ h

−{ }✗

∧ h
+
→ h

0{ }✗

 (case (a) in figure 3). Then, by the 

interoperability of work (second line) and by the zeroth law (third line): 

   

(h
0

,w
0
)→ (w

0
,w

0
){ }✓

(w
0
,w

0
)→ (w

−
,w

+
){ }✓

(w
−
,w

+
)→ (h

−
,w

+
){ }✓

 

By definition of adiabatically possible: 

   
(h

0
,w

0
)→ (h

−
,w

+
){ }✓ ⇒ h

0
→ h

−{ }✓  

which violates the definition of heat medium, for this means that two of its 
heat attributes are adiabatically accessible from one another. The same line of 
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argument leads to a contradiction when 
  

h
0
→ h

+{ }✗

∧ h
−
→ h

0{ }✗

(case (d)) and 

when 
  

h
0
→ h

+{ }✗

∧ h
0
→ h

−{ }✗

 (case (c)). Therefore the laws of constructor-

theoretic thermodynamics require that heat cannot be completely converted 
into work.   
 
This constitutes the promised unification of Caratheodory’s and Kelvin’s 
approaches. Note that the principles and definitions used to achieve this 
result do not require a definite sign of the change in U for adiabatically 
possible tasks with an adiabatically impossible transpose. Thus, as I 
remarked, the recovery of Kelvin’s statement rests on different physical laws 
from the ancillary laws invoked by, e.g., (Buchdahl,  1966; Lieb & Yngvason, 
1999). 
 
Only at this stage can one introduce, without circularities, the notions of 
‘doing work on’, and ‘transferring heat to’, a substrate.  

In any given construction to perform the task 
  
T = x → y{ }  on a substrate M 

such that    ΔS T( ) ≠ 0,ΔU T( ) ≠ 0 , allowing for side-effects, ‘the work done on a 

substrate’ is the change  ΔW  in the energy U of the work-media required as 
side-effects in the construction; and the ‘heat absorbed by the substrate’ is the 

change  ΔQ  in the energy U of the heat media required as side-effects. Whether 

or not such quantities are always positive (as under the known laws of 
physics), negative, or lack a definite sign, is for the subsidiary theory to 
decide. Constructor theory allows all such possibilities.  
 
By focusing on side-effects being instantiated in heat media or work media –
i.e. two different kinds of “agents of transfer” of energy, the constructor-
theoretic notion is faithful to the traditional one, while also improving on it. 
For example, consider (Atkins, 2004): 
“Energy has been transferred from source to object through the agency of heat: 
heat is the agent of transfer, not the entity transferred.” 
In constructor theory, the crucial difference is that such different ‘agents of 
transfer’ (work media and heat media) are exactly defined, and distinct from 
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one another. This comes from the interoperability of work and heat – 
properties that cannot even be stated in the prevailing conception, but have 
elegant expressions in constructor theory. By the conservation of energy 
applied to the whole system, including the substrate in question and the side-
effects of the construction task, one recovers the traditional formula: 
 

 ΔU = ΔW + ΔQ  

 

In constructor theory, this formula is the culmination of the construction of 
thermodynamics, rather than its foundation; but it has now no circularity and 
its quantities are exactly defined, and have physical meaning, as promised.  

8. Conclusions 
 
I have proposed a novel formulation of the first, second and zeroth laws of 
thermodynamics, under constructor theory. There are three main results: an 
exact, scale-independent, non-probabilistic formulation of those laws, via the 
definition of adiabatic possibility in terms of possible computations on a 
substrate; an exact connection between the first law of thermodynamics and 
information theory; and an exact distinction between work and heat, which 
leads to the unification of Kelvin’s and Carathéodory’s statements of the 
second law. This approach improves on Carathéodory’s. The latter, too, 
imposes restrictions on subsidiary theories via principles, or axioms, that aim 
to make contact with the physical world; however, those principles are not 
exact, and rely on ad-hoc definitions, having little physical content. In 
addition, their emphasis is on defining the entropy function of state. In the 
constructor-theoretic approach the principles are exact, more general, and 
their physical content resides in the interoperability laws and in the notions of 
heat and work media, rather than in the existence of an entropy function.  
 
This theory applies to single systems, and to objects that are out of 
equilibrium (for which thermodynamic attributes are possible). Although 
beyond the scope of this paper, equilibrium thermodynamics can be 
recovered within this picture; and connections with the recently emerged 
field of quantum thermodynamics can be expected to arise. These are among 



 46 

the promising new avenues opened up by this approach. But this is another 
story, and shall be told another time.  
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Appendix 
 
The condition for a quantum system M to be a work medium with a work 

variable including the attributes 
  
ρ

a
,ρ

b{ }  is that there are quantum states  ρx
, 

  ρx '
satisfying the swap property (condition 2b in section 5) – i.e., such that the 

swap task on the variable 
  
ρ

a
,ρ

b{ } is possible with side-effects only on a 

second instance of M prepared in one of those quantum states:  

 
  

ρ
a
⊗ρ

b
→ρ

b
⊗ρ

x '

ρ
b
⊗ρ

b
→ρ

a
⊗ρ

x

  

Let us assume that the density operators are diagonal in the same basis as the 
Hamiltonian of the system M, so that the states are not changed unless when 
acted upon by the constructor, and that each have a different expectation 
value for energy. Explicitly:  
 

  

ρ
a
= a

i
E

i
i=1

N

∑ E
i

ρ
b
= b

i
E

i
i=1

N

∑ E
i

ρ
x
= x

i
E

i
i=1

N

∑ E
i

 

 

where 
  

b
i
= 1

i=1

N

∑ = x
i

i=1

N

∑ = a
i

i=1

N

∑   and   0 ≤ a
i
≤ 1 ,   0 ≤ b

i
≤ 1 ,   0 ≤ x

i
≤ 1 . 

Under unitary quantum theory, when energy is conserved, that the task is 
possible imposes very strict constraints on what the ‘work states’   ρa

,ρ
b
 can 

possibly be: in short, they can only be pure states. 
 
The second of the above equations is the one I focus on. Let us define the von 

Neumann entropy 
   
S(x) ! − x

i
i=1

N

∑ ln(x
i
)  and also the expectation value of 
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energy,
   
E(x) ! x

i
i=1

N

∑ E
i
 for any ‘vector’ of probabilities   x = (x

1
,x

2
,...,x

N
) . That 

equation generates a system of two equations obtained by imposing the 
energy conservation and the conservation of entropy (due to unitarity of 
quantum theory):  

  

S(x) = 2S(b)−S(a)
E(x) = 2E(b)− E(a)

⎧
⎨
⎪

⎩⎪
⇔

S(x) = 2S(b)−S(a)
(x − p

0
).E = 0

⎧
⎨
⎪

⎩⎪
 

where I have introduced the notation: 
   E ! (E

1
,E

2
,...,E

N
)  and 

   p0
! 2b − a  .  

 
If the states are pure, the entropy equation is an identity and therefore 
solution exists provided that energy is conserved.  
Let us now suppose instead that   0 < a

i
< 1 ,   0 < b

i
< 1 ,   0 < x

i
< 1  (i.e., I suppose 

that the states are strictly mixed). I show that no pair of mixed states is 
allowed as a solution, unless in the trivial case where  ρa

= ρ
b
.  

 
The proof has two steps. 
 
First, one shows that the solution, if it exists, must be unique.  
For let us suppose that the set Σ  of solutions contains more than one element.  
Since the set Σ is the intersection of two convex functions (the entropy 
function and the energy hyperplane appearing in the system above), Σ  must 
be a convex set. Therefore given any two elements   x ,x '  in Σ , the point 

  λx + (1− λ)x ',λ ∈[0,1]  is a solution too:   λx + (1− λ)x '∈Σ . Since it is a solution 
of the system, it satisfies in particular the entropy equation, i.e.: 
 

  S(λx + (1− λ)x ') = 2S(b)−S(a) = λS(x)+ (1− λ)S(x ')  
 
(where I have used that   S(x) = 2S(b)−S(a) = S(x ')  by construction).  
This is a contradiction with the property that the entropy is a strictly concave 
function, i.e. that 

  S(λx + (1− λ)x ') < λS(x)+ (1− λ)S(x ')  
Hence the solution must be unique. 
 
This implies that the solution   x0

(if it exists) is the point at which the energy 
hyperplane (defined by the energy equation of the system above) touches the entropy 
hypersurface.  
 
The second part of the proof shows that if   x0

exists, then  a = b .  
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Suppose   x0
 is the (unique) solution.  Consider the tangent hyperplane of   S(x)

at   x0
:   z = (x − x

0
).∇S x0

. Since   x0
 is the solution of the system, this must be the 

same hyperplane as that defined by the energy equation. In other words, the 
solution   x0

 of the system has the property that, for any  x  : 
 

  (x − x
0
).∇S x0

= (x − p
0
).E  

 

where 
  
(x − x

0
).∇S x0

= − (x
i
− x

0i
)(ln(x

0i
)+1

i=1

N

∑ )  and, as I said, 
   p0
! 2b − a . 

In particular, the equation must be satisfied for   x = p
0
.  

Substituting   x = p
0
, one has: 

  
0 = (p

0i
− x

0i
)(ln(x

0i
)+1

i=1

N

∑ ) = (p
0i
− x

0i
)ln(x

0i
)

i=1

N

∑  

because 
  

(p
0i
− x

0i
) = 0

i=1

N

∑  (for the summands add up to one separately). 

The choice   x0
= p

0
= 2b − a  satisfies the equation. Moreover, since the solution 

of the system is unique, if there is one   x0
that satisfies the above equation, it 

must be the solution.  
On the other hand, the solution   x0

= p
0

 of the system must also satisfy the 

entropy equation   S(x
0
) =  2S(b)−S(a) , whereby  

 

  S(2b − a) = 2S(b)−S(a)  
 
Since S is non-linear, this holds only if  b = a . Therefore, this shows that if a 
solution exists, then  ρa

= ρ
b

, as promised. Note that the presence of 
entanglement would make the conditions even more restrictive and thus this 
conclusion would not change.  
Therefore work variables of a quantum system must consist of pure eigenstates 
of energy. From the separate argument mentioned in section 5 (using 
ensemble-distinguishability, which holds in quantum theory) it also follows 
that work states in the same work variable must be orthogonal – i.e., that a 
work variable is an information variable.  
 
 
 


